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Motivation
• MRSA outbreak in a neonatal ward (Ryhov, 

Jönköping)

• Improved hygiene routines requires knowledge 

about routes of transmission

• Hypothesis: mathematical modelling can aid in 

finding the most likely chain of transmission 
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Introduction

• Mathematical modelling can aid infection 
control in many ways:

– From outbreak data we can estimate disease-

specific parameters, e.g. infectivity, effect of 
isolation


– With a validated model we can simulate 
interventions, e.g. improved hygiene, screening 
programmes


– We can infer the most likely transmission chain 
given outbreak data, e.g. contacts, timing of 
symptoms
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Goal of study
• We aim to build a mathematical model for 

inference of transmission chains

• Input: time of symptoms, genetic sequences, 

contact data, swab results, healthcare worker 
schedules, generation & incubation time


• Output: Transmission trees 
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Abstract

There exists significant interest in developing statistical and computational tools for inferring

‘who infected whom’ in an infectious disease outbreak from densely sampled case data,

with most recent studies focusing on the analysis of whole genome sequence data. How-

ever, genomic data can be poorly informative of transmission events if mutations accumu-

late too slowly to resolve individual transmission pairs or if there exist multiple pathogens

lineages within-host, and there has been little focus on incorporating other types of outbreak

data. We present here a methodology that uses contact data for the inference of transmis-

sion trees in a statistically rigorous manner, alongside genomic data and temporal data.

Contact data is frequently collected in outbreaks of pathogens spread by close contact,

including Ebola virus (EBOV), severe acute respiratory syndrome coronavirus (SARS-CoV)

and Mycobacterium tuberculosis (TB), and routinely used to reconstruct transmission

chains. As an improvement over previous, ad-hoc approaches, we developed a probabilistic

model that relates a set of contact data to an underlying transmission tree and integrated

this in the outbreaker2 inference framework. By analyzing simulated outbreaks under vari-

ous contact tracing scenarios, we demonstrate that contact data significantly improves our

ability to reconstruct transmission trees, even under realistic limitations on the coverage of

the contact tracing effort and the amount of non-infectious mixing between cases. Indeed,

contact data is equally or more informative than fully sampled whole genome sequence data

in certain scenarios. We then use our method to analyze the early stages of the 2003 SARS

outbreak in Singapore and describe the range of transmission scenarios consistent with

contact data and genetic sequence in a probabilistic manner for the first time. This simple

yet flexible model can easily be incorporated into existing tools for outbreak reconstruction

and should permit a better integration of genomic and epidemiological data for inferring

transmission chains.
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Bayesian framework

• In a Bayesian model the parameters 
(including transmission trees) are considered 
random variables


• A prior probability distribution of parameters 
 is updated using data  according to:

θ

P(θ) D
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P(θ |D) =
P(D |θ)P(θ)

P(D)

Likelihood



Likelihood: an example
• Assume that have an unfair coin that shows 

Heads with probability p and Tails with 1-p

• Assume we have data: 

• What value of p should we choose?

• The likelihood of the data 



• Likelihood maximised at

D = HTHTT

P(D |p) = p2(1 − p)3
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The outbreaker model (Campbell et al.)

• A transmission tree is described by  the most 
recent sampled ancestor of case  and  the 
number of generations between ancestor and 
case


• Remember:  is a random  
variable e.g. with 5 cases  
we might get 
 

αi
i κi

αi

α1 = (0,0.1,0.1,0.1,0.7)
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posterior tree. Notably, this analysis proposed several new ancestries (sin2679 to sin842, sin842
to sin847 and sin848 to sin850) rejected with a λ value of 1e-4 and had a substantially lower
average log-likelihood (-647.4 compared to -579.2). Therefore, while the assumption that λ
was 0 may have been valid, this approach forced the algorithm to accept ancestries highly
unlikely under the genetic and temporal likelihoods, thereby preventing a meaningful integra-
tion of different data sources.

Fig 3. Reconstruction of the 2003 SARS outbreak in Singapore. A) Circles represent individual cases, and edges the epidemiological contacts reported between them.
B) The outbreak was reconstructed using temporal and genetic data. Arrows represent posterior ancestries between cases, scaled in width by the posterior frequency of
that ancestry. Ancestries with a minimum posterior frequency of 0.01 were included. The color of a node corresponds to the median posterior infection time of that
case. C) The outbreak was reconstructed using temporal, contact and genetic data, and the non-infectious contact probability λ fixed at a value of 1e-4. D) The outbreak
was reconstructed using temporal, contact and genetic data, and the non-infectious contact probability λ fixed at a value of 0.

https://doi.org/10.1371/journal.pcbi.1006930.g003

Inferring transmission chains from temporal, genetic and contact data
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Likelihood in outbreaker
• The likelihood of a transmission tree is 

composed of four terms:

– Genetic likelihood

– Temporal likelihood

– Reporting likelihood

– Contact likelihood
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Genetic likelihood
• This takes into account the sequence data

• The likelihood of case j being the ancestor of i 

given 

– genetic similarity

– assumed mutation rate

– generations separating the cases
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Temporal likelihood
• This takes into account the time of symptom 

onset and depends on an inferred time of 
infection


• The likelihood of case j having infected i given

– symptom time

– generation time distribution (serial interval)

– incubation period distribution
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Reporting likelihood
• Describes the probability of unobserved 

intermediate cases

• Depends on


– number of generations separating the cases

– probability of observation 
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Contact likelihood

• Depends on a contact matrix where  if 
there is a reported between case i and j and 

 otherwise

cij = 1

cij = 0
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wκ = w⇤w⇤. . .⇤w, where ⇤ is the convolution operator and is applied k times. The first term
describes the probability of the imputed time of infection under the incubation period distri-
bution. The second term describes the probability of observing the delay between infection
times of the case and its most recent sampled ancestor under the generation time distribution,
over the imputed number of generations. The reporting likelihood describes the probability of
unobserved intermediate cases:

Ω3
i à pÖkijpÜ

and is calculated as:

NBÖ1jki � 1; pÜ

where NB is the probability mass function of the negative binomial distribution, and describes
the probability of not observing κi—1 cases given a probability of observation of π.

Contact likelihood

To integrate contact data into outbreaker, we developed a method for modelling contact data
from transmission trees (Fig 4). The model considers undated, undirected, binary contact
data, such that the contact status ci,j is set to 1 if contact is reported between individuals i and j
and set to 0 otherwise. The model is hierarchical and describes two processes: the occurrence
of contacts and the reporting of contacts. Transmission pairs experience contact with probabil-
ity η. This formulation accounts for the possibility of transmission occurring without direct
contact, for example by indirect environmental contamination as is observed with Clostridium
difficile [52]. Sampled, infected individuals that do not constitute a transmission pair experi-
ence contact with probability λ, the non-infectious contact probability. Contacts that have
occurred, either between transmission pairs or non-transmission pairs, are then reported with
probability ε, the contact reporting coverage. Contacts that have not occurred are reported
with probability z, the false positive reporting rate.

We make two assumptions to simplify this model, which can be relaxed in future work if
necessary. Firstly, we assume that direct contact is necessary for transmission and set η to 1.

Fig 4. Modelling contact data from transmission trees. Circles represent sampled, infected individuals. ci,j represents the contact status between cases i and j, with 1
indicating a reported contact and 0 the absence of a reported contact. Transmission pairs and non-transmission pairs experience contact with probabilities η and λ,
respectively. These contacts are reported with probability ε. False positive reporting of contacts that have not occurred occurs with probability z. In the simplified model
implemented in outbreaker2, as indicated by colored shading and solid outlines, η is assumed to be 1 and z assumed to be 0.

https://doi.org/10.1371/journal.pcbi.1006930.g004

Inferring transmission chains from temporal, genetic and contact data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006930 March 29, 2019 13 / 20

=1

=0=0



Extensions
• Disease transmission via healthcare workers 

can be accounted for by:

– Including them into the contact data

– Defining a new type of indirect contact


• Routine swabs of patients, parents, HCWs and 
environment should affect the reporting 
likelihood
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Questions & suggestions?
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